Familial Congenital Methemoglobinemia in Pomeranian Dogs Caused by a Missense Variant in the NADH‐Cytochrome B5 Reductase Gene
نویسندگان
چکیده
BACKGROUND In veterinary medicine, congenital methemoglobinemia associated with nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase (b5R) deficiency is rare. It has been reported in several breeds of dogs, but little information is available about its etiology. OBJECTIVES To analyze the NADH-cytochrome b5 reductase gene, CYB5R3, in a Pomeranian dog family with methemoglobinemia suspected to be caused by congenital b5R deficiency. ANIMALS Three Pomeranian dogs from a family with methemoglobinemia were analyzed. Five healthy beagles and 5 nonrelated Pomeranian dogs without methemoglobinemia were used as controls. METHODS Methemoglobin concentration, b5R activity, and reduced glutathione (GSH) concentration were measured, and a turbidity index was used to evaluate Heinz body formation. The CYB5R3 genes of the affected dog and healthy dogs were analyzed by direct sequencing. RESULTS Methemoglobin concentrations in erythrocytes of the affected dogs were remarkably higher than those of the control dogs. The b5R activity of the affected dogs was notably lower than that of the control dogs. DNA sequencing indicated that this Pomeranian family carried a CYB5R3 gene missense variant (ATC→CTC at codon 194) that resulted in the replacement of isoleucine (Ile) by leucine (Leu). CONCLUSIONS AND CLINICAL IMPORTANCE This dog family had familial congenital methemoglobinemia caused by b5R deficiency, which resulted from a nonsynonymous variant in the CYB5R3 gene. This variation (c.580A>C) led to an amino acid substitution (p.Ile194Leu), and Ile194 was located in the proximal region of the NADH-binding motif. Our data suggested that this variant in the canine CYB5R3 gene would affect function of the b5R in erythrocytes.
منابع مشابه
Familial idiopathic methemoglobinemia revisited: original cases reveal 2 novel mutations in NADH-cytochrome b5 reductase.
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Reces...
متن کاملFocus on hematology Familial idiopathic methemoglobinemia revisited: original cases reveal 2 novel mutations in NADH-cytochrome b5 reductase
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen’s University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Reces...
متن کاملClinical spectrum and molecular basis of recessive congenital methemoglobinemia in India.
We report the clinical features and molecular characterization of 23 patients with cyanosis due to NADH-cytochrome b5 reductase (NADH-CYB5R) deficiency from India. The patients with type I recessive congenital methemoglobinemia (RCM) presented with mild to severe cyanosis only whereas patients with type II RCM had cyanosis associated with severe neurological impairment. Thirteen mutations were ...
متن کاملConcentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay.
The activity of NADH-cytochrome b5 reductase (NADH-methemoglobin reductase) is generally reduced in red cells of patients with recessive hereditary methemoglobinemia. To determine whether this lower activity is due to reduced concentration of an enzyme with normal catalytic properties or to reduced activity of an enzyme present at normal concentration, we measured erythrocyte reductase concentr...
متن کاملTwo novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia.
Hereditary methemoglobinemia due to reduced nicotinamide adenine dinucleotide (NADH) cytochrome b5 reductase (b5R) deficiency is classified into two types, an erythrocyte (type I) and a generalized (type II). We investigated the b5R gene of a patient with type II from a white United Kingdom (UK) family and found that the patient was a compound heterozygote for two novel mutations. The first mut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2018